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Abstract

This paper investigates the coupled bending vibrations of a stationary shaft with two cracks. It is known from the

literature that, when a crack exists in a shaft, the bending, torsional, and longitudinal vibrations are coupled. This study

focuses on the horizontal and vertical planes of a cracked shaft, whose bending vibrations are caused by a vertical

excitation, in the clamped end of the model. When the crack orientations are not symmetrical to the vertical plane, a

response in the horizontal plane is observed due to the presence of the cracks. The crack orientation is defined by the

rotational angle of the crack, a parameter which affects the horizontal response. When more cracks appear in a shaft, then

the coupling becomes stronger or weaker depending on the relative crack orientations. It is shown that a double peak

appears in the vibration spectrum of a cracked or multi-cracked shaft.

Modeling the crack in the traditional manner, as a spring, yields analytical results for the horizontal response as a

function of the rotational angle and the depths of the two cracks. A 2� 2 compliance matrix, containing two non-diagonal

terms (those responsible for the coupling) serves to model the crack. Using the Euler–Bernoulli beam theory, the equations

for the natural frequencies and the coupled response of the shaft are defined. The experimental coupled response and

eigenfrequency measurements for the corresponding planes are presented. The double peak was also experimentally

observed.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Modeling the crack with compliance matrix

In general, the local flexibility of a cracked beam can be described by the local flexibility matrix C, whose
dimension depends on the number of the degrees of freedom (dof) considered (maximum 6� 6). Such a matrix
was first introduced for beams of rectangular cross section with transverse surface cracks by Dimarogonas and
Paipetis [1]. Some of the elements of this matrix were identified as direct compliances and have been computed
previously by several authors. By inversion of the compliance matrix, the local stiffness matrix can be obtained
as K ¼ C�1. The non-diagonal terms of the matrix show that a crack causes coupling between the longitudinal
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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and bending vibrations, between the lateral and torsional vibrations, and between the bending vibrations in
two perpendicular planes.

Dimarogonas and Paipetis [1], introduced the full 5� 5 flexibility matrix for the cracked region and
computed the local flexibility for a rectangular beam with a transverse crack neglecting torsion. Furthermore,
they observed that this matrix was not purely diagonal but had non-diagonal terms that indicated coupling
between the longitudinal and lateral vibrations. Papadopoulos and Dimarogonas [2] and Papadopoulos [3]
calculated the complete matrix C(6� 6) of the local compliance induced by the crack along with the non-
diagonal terms of the matrix which show the directions in which coupling exists.

The local compliance in each direction is calculated using the strain energy release rate method
and the associated stress intensity factor as given by Tada et al. [4]. Okamura et al. [5] and Liebowitz
et al. [6,7] computed the diagonal element corresponding to tension. Rice and Levy [8] computed the
tension-bending terms and their coupling; the torsion terms were computed by Dimarogonas and
Massouros [9].

1.2. Coupled vibrations of cracked shafts

It is known that a crack in a structure can cause coupled vibrations. The coupled response is useful not only
in proving the existence of a crack but also in identifying characteristics of the crack such as its depth and
position. The usage of coupled responses is based on the fact that when a crack appears in a structure, the
response of an excitation is observed not only in the direction of the excitation but also in other directions.

The coupling is strongly dependent on the position of the crack in the cross section. In other words, the
coupling is affected by the ‘‘amount’’ of dissimilarity in moments of inertia in the cracked cross section. As the
crack rotates following the rotation of the rotor, it passes across areas that increase or decrease the cracked
cross-section asymmetry to the plane of excitation. In these areas, it is important to know the exact value of
the local compliance matrix so as to predict precisely the coupling effect in the eigenfrequency and the
response of the shaft. Darpe et al. [10] gave values of the compliance matrix as a function of the rotational
angle of the crack.

In order to develop models able to identify the crack-induced coupling effect, many researchers have studied
in detail the nonlinear phenomenon of crack breathing. To model the breathing of the crack, Grabowski [11]
suggested a change in the stiffness between an uncracked rotor, representing the closed crack, and the cracked
rotor, representing the open state of the crack at the particular rotor angular position where the crack edge
becomes vertical. Alternatively, the change takes place when there is a change in the sign of the rotor response
in a rotor-fixed coordinate in the crack direction (perpendicular to crack edge); this is referred to as the hinge
model, introduced by Gasch [12] in 1976.

Later, Nelson and Nataraj [13] developed a finite element formulation of a crack element. They used a
rotating stiffness variation that depended on the rotor curvature at the crack section. Mayes and Davies [14]
suggested a sinusoidal stiffness variation in order to model the breathing in a more sensible way, since a rotor
crack is expected to open and close gradually due to gravity. Papadopoulos and Dimarogonas [15–17]
represented stiffness variation by way of a truncated, four-term series using known stiffness matrices
corresponding to a fully open, a half-open–half-closed, and a fully closed crack. Schmalhorst [18] used contact
segments on the face of the crack in a FE model to help decide which part of the crack face was under pressure
and the resultant breathing behavior of the cracked part. Li et al. [19] represented the crack as a hinge of
variable stiffness in two rotor-fixed lateral directions. The crack was introduced at the node of a finite element
model (FEM). The stiffness change depended on the direction of the bending moment at the crack cross
section. Wauer [20] replaced the local geometric discontinuity with a discontinuity in load and used Galerkin’s
method to obtain a response. The crack was assumed to be completely closed or completely open depending
on the rotor curvature. Ostachowicz and Krawczuk [21] used a beam FEM with a modified stiffness matrix to
account for the crack effect and consider all but the axial dof. They found a lateral response to torsional
excitation for a rotating shaft with an open crack. Sekhar and Prabhu [22] used a FEM for the cracked rotor
with an open crack and studied the possibility of backward whirl and bending stress fluctuations due to the
crack. Abraham and Brandon [23] proposed a substructure approach for modeling the breathing behavior of
the crack using Lagrange multipliers.
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1.3. Multi-cracked shafts

A free vibration analysis model of multi-cracked shafts is presented for the first time by Tsai and Wang [24].
The Timoshenko beam theory is used and the cracks are assumed to remain opened. The effects of both
relative distances along the axis and/or orientations of cracks are considered in the free vibration analysis.

The problem of multiple fatigue cracks in shafts could appear when multiple loads are applied. Sekhar [25]
considered a FEM analysis on flexural vibrations of a rotor system by including two transverse open cracks.
He noticed appreciable eigenfrequency changes for shafts having low slenderness ratios. In the case of two
cracks of unequal depths, the larger crack has the more significant effect on the eigenfrequency and the effect
of even small cracks on the stability speed is very much evident from the results.

Darpe et al. [26] studied the effect of the presence of two transverse surface cracks using the strain energy
release concept. The flexibility of the cracked shaft due to two surface cracks having an angle g between them
is calculated. They presented the effect of the interaction of the two cracks on the breathing behavior and on
the unbalance response of the rotor. The mutual position and orientation of the two cracks significantly
changes the dynamic response of the rotor.

A model-based approach for two crack identification has been applied by Sekhar [27] in a rotor system.
The fault-induced change in the rotor system is taken into account by equivalent loads in the mathematical
model. The equivalent loads are virtual forces and moments acting on the linear undamaged system in such a
way as to generate a dynamic behavior identical to the measured one in the damaged system. The rotor has
been modeled using the finite element method, while the cracks are considered through local flexibility
changes. The cracks have been identified by their depths and locations on the shaft.

Patil and Maiti [28] present an approximate method for detection of multiple open cracks using frequency
measurements. The procedure gives a linear relationship explicitly between the changes in natural frequencies
of the beam and the damage parameters. These parameters are determined from the knowledge of changes in
the natural frequencies.

1.4. The present approach

In this paper, the values of the 2� 2 compliance matrix are calculated for each angle of an entire rotation of
the transverse crack. In the whole rotation, some rotation angles permit calculation of the compliance using
the stress intensity factor of the crack, but some others prevent this because the stress intensity factor is not
usable for any percentage of the crack depth. So, for cases where the crack depth makes the stress intensity
factor unreliable, the compliance values are computed by interpolating between trustworthy compliance
values. The interpolation areas are obtained using B-splines. At the same time, calculations determine the
changes in the four terms of the compliance matrix that concern bending for an entire rotation.

The bending coupling effect as a function of rotational angle and depth of the crack is investigated and the
results for the change in natural frequency and response are obtained and presented. The analytical results are
compared with experimental response measurements in order to validate the theoretical model of coupled
bending vibrations in a clamped-free shaft. The analytical model considers two cracks of different depths and
rotational angles, while the experimental model considers a shaft with one crack. The fact that two cracks are
introduced in the shaft aims at presenting that two cracks can cause more or less intense coupling depending at
the angular position and the location of each other. There are cases in which the coupling is insensible even
with two cracks present, but there are also cases in which one crack, even with small depth, can provoke the
coupling phenomenon clearly. The experimental procedure aims at the demonstration of the coupling
phenomenon in a clamped-free stationary shaft with coupling observed in the frequency response functions of
both planes.

2. The compliance of the rotating crack

A Cartesian coordinate system ZOY is considered in Fig. 1, with point O in the center of the circular cross
section. The angle j defines the rotational position of the crack, taking values from 01 to 1801 in order to cover
all the rotational situations (compliance takes symmetrical or anti-symmetrical values for the other half).
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Fig. 1. The geometry of rotating crack section when j40.
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The bounds for the integration of Eqs. (3)–(6) are now from �z� b̄1 to z� b̄2 for the variable z as in Ref. [29],

and from ðh̄2 þ k̄Þ to
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z̄2
p

for the variable y, defined as follows in Eqs. (1) and (2):

b1 ¼ b cos j� s; b2 ¼ b cos jþ s; s ¼ ðR� aÞ sin j; k ¼ ðb2 � zÞ sin j, (1)

h1 ¼ b sin jþ ðR� aÞ cos j; h2 ¼ �b sin jþ ðR� aÞ cos j. (2)

Here h̄2 ¼ h2=R, k̄ ¼ k=R and all variables in Eqs. (1) and (2) take dimensionless values (indicated by the
same variable with a bar) when divided by R.

However z ¼ 1 for ā ¼ a=Rp1, whereas for ā41, it is recommended a value of z ¼ 0.95 to be used [29]. The
dimensionless local compliance contains only the variables ā and j, so if one defines ȳ1 ¼ ȳ� 1þ ā, and
lȳ ¼ ȳ1=h̄z, then the following double integrals for the compliance are obtained [30,31]:

c̄55ðā;jÞ ¼ c55ðā;jÞ
ER3

1� n2
¼

32

p

Z zb̄2ðā;jÞ

�zb̄1ðā;jÞ

Z ffiffiffiffiffiffiffiffi
1�z̄2
p

k̄þh̄2

ð1� z̄2Þȳ1F2
2ðlȳÞdȳdz̄, (3)

c̄44ðā;jÞ ¼ c44ðā;jÞ
ER3

1� n2
¼

16

p

Z zb̄2ðā;jÞ

�zb̄1ðā;jÞ

Z ffiffiffiffiffiffiffiffi
1�z̄2
p

k̄þh̄2

z̄2ȳ1F
2
1ðlȳÞdȳdz̄, (4)

c̄45ðā;jÞ ¼ c45ðā;jÞ
ER3

1� n2
¼

32

p

Z zb2ðā;jÞ

0

Z ffiffiffiffiffiffiffiffi
1�z̄2
p

k̄þh̄2

z̄ȳ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z̄2

p
F1ðlȳÞF 2ðlȳÞdȳ dz̄, (5)

c̄45ðā;jÞ ¼ c45ðā;jÞ
ER3

1� n2
¼ c54ðā;jÞ

ER3

1� n2
¼ c̄54ðā;jÞ. (6)

The rotation of the crack is an important issue that strongly affects the coupling phenomenon. Under the
steady bending load in the vertical direction, the crack opens and closes as a function of its rotational angle.
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Fig. 2. The breathing of the crack for (a) horizontal load and (b) vertical load.

Fig. 3. Dimensionless compliances c̄44,c̄45,c̄54 and c̄55as a function of rotational angle for crack depths ā ¼ 0:2 and 0.4. Continuous line:

c̄55 for ā ¼ 0:2; dashed line: c̄55 for ā ¼ 0:4; dotted line: c̄44 for ā ¼ 0:2; dashed-dotted line: c̄44 for ā ¼ 0:4; dashed-dotted line: c̄45 for

ā ¼ 0:2; short dashed line: c̄45 for ā ¼ 0:4; short dotted line: c̄54 for ā ¼ 0:2; and short dashed-dotted line: c̄54 for ā ¼ 0:4.
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When the bending load is horizontal, the opening and closing of the crack occurs in different rotational angles
than those for a vertical load. In Figs. 2a and b, the opening and closing of the crack for both loads is
shown as a function of the rotational angle. In these two situations of the bending load, there are similar
conditions for the crack (opened, closed, semi-open). The value of any compliance for the rotational angles
shown in Fig. 2 for a region encompassing j ¼7301 is computed using Eqs. (3)–(6). For the remaining
rotational angles, each compliance function is calculated by interpolating the known values using B-splines as
in Refs. [30,32]. The change of each compliance as a function of the rotational angle and depth of the crack is
presented in Fig. 3. Another way to calculate the compliance function could be by computing the compliance
normal to the crack edge and expressing it along the vertical and horizontal direction. This approach is used
by many researchers in this field, and results in a harmonic periodic compliance change. However, the
compliance change is not exactly harmonic, since it has some constant areas during rotation (when the crack is
closed) but it is, of course, periodic. In the present approach the compliance is calculated in each angle of
rotation of the shaft giving reliable values.

Importantly, there are rotational angles for which any compliance can be equal to zero. Compliance c̄55 is
equal to zero for the rotational angles that close completely the crack. The same goes for compliance c̄44.
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Fig. 4. Comparison of three different approaches (continuous line: A.K. Darpe et al.; dashed dot line: Dimarogonas and Papadopoulos;

and dashed line: current approach) for local compliances C55 and C45 as a function of rotational angle j.
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Compliance c̄45 takes a value equal to zero not only for a completely closed crack but also for those rotational
angles where the crack is symmetric to the plane of the bending load. So, c̄45ð0Þ ¼ c̄45ð180Þ ¼ 0. In Fig. 4, the
current and traditional approaches for the compliance change during crack rotation are compared with a
truncated cosine series in Ref. [15] and a recent approach made in Ref. [10].
3. Coupled bending vibrations of the shaft using Euler–Bernoulli theory

Consider a clamped-free stationary shaft of length L with two transverse cracks of depth a1 and a2 at
distances L1 and L2, respectively, from the clamped end. A Cartesian coordinate system is defined as in Fig. 5;
the vertical plane OXY is defined as plane 5 and the horizontal plane OXZ is defined as plane 4. The bending
vibrations occur in both planes under excitation in plane 5. The cracks divide the shaft into three parts with
vertical displacements Yi(x,t), i ¼ 1,2,3 and horizontal displacements Zi(x,t), i ¼ 1,2,3 as shown in Fig. 5.
Each part is connected with the next by the spring Ki, whose magnitude depends on the crack depth and the
crack angular position. The magnitude of Ki is different for the vertical and horizontal plane. The three parts
of the shaft vibrate in the vertical plane (plane 5) with Y1(x,t), Y2(x,t), and Y3(x,t), and in the horizontal plane
(plane 4) with Z1(x,t), Z2(x,t), and Z3(x,t). When there is no crack, the shaft is considered to vibrate
independently in two planes. In this case, the response exists exclusively in the plane of excitation. So, the
equations of motion as shown below are not coupled (as happens in rotating shafts).

The bending moment P5 is applied at the free end. The bending vibration is described by the
Euler–Bernoulli equations, in dimensionless form, for the vertical and horizontal plane as follows:

�
q4Ȳ i

qx̄4
¼

1

C̄
2

y

q2Ȳ i

qt2
; �

q4Z̄i

qx̄4
¼

1

C̄
2

z

q2Z̄i

qt2
; where

for i ¼ 1; 0px̄pL̄1;

for i ¼ 2; L̄1ox̄pL̄2;

for i ¼ 3; L̄2ox̄p1:

(7)

Here i ¼ 1,2,3 is the part of the beam, x̄ ¼ x=L, Ȳ i ¼ Y i=L, Z̄i ¼ Zi=L, t ¼ t/T is the dimensionless time, T

is the period of vibration, C̄y ¼ C̄z ¼
ffiffiffiffiffiffiffiffiffiffiffi
EI=m

p
ðT=L2Þ, m ¼ Ar is the linear density, r ¼ 7860 kgm�3 is the

density of the material, A ¼ pR2 is the entire cross-section area of the shaft, I ¼ pR4/4 is the moment of inertia
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Fig. 5. A shaft with two cracks.
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of the entire cross-section area of the shaft, E ¼ 210GPa is the Young’s modulus of elasticity, and R is the
shaft radius.

After the separation of variables, the three partial solutions for each part of the vertical plane are in
dimensionless form:

Ȳ 1ðx̄Þ ¼ A1 coshðk̄yx̄Þ þ A2 sinhðk̄yx̄Þ þ A3 cosðk̄yx̄Þ þ A4 sinðk̄yx̄Þ, (9)

Ȳ 2ðx̄Þ ¼ A5 coshðk̄yx̄Þ þ A6 sinhðk̄yx̄Þ þ A7 cosðk̄yx̄Þ þ A8 sinðk̄yx̄Þ, (10)

Ȳ 3ðx̄Þ ¼ A9 coshðk̄yx̄Þ þ A10 sinhðk̄yx̄Þ þ A11 cosðk̄yx̄Þ þ A12 sinðk̄yx̄Þ. (11)

The three partial solutions for each part of the horizontal plane are:

Z̄1ðx̄Þ ¼ B1 coshðk̄zx̄Þ þ B2 sinhðk̄zx̄Þ þ B3 cosðk̄zx̄Þ þ B4 sinðk̄zx̄Þ, (12)

Z̄2ðx̄Þ ¼ B5 coshðk̄zx̄Þ þ B6 sinhðk̄zx̄Þ þ B7 cosðk̄zx̄Þ þ B8 sinðk̄zx̄Þ, (13)

Z̄3ðx̄Þ ¼ B9 coshðk̄zx̄Þ þ B10 sinhðk̄zx̄Þ þ B11 cosðk̄zx̄Þ þ B12 sinðk̄zx̄Þ. (14)

Here k̄
2

y ¼ o=o0, k̄
2

z ¼ o=o0, o is the vibration frequency and o0
2
¼ EI/(mL4).

3.1. Boundary conditions and the characteristic determinant

There are 24 unknown variables in the above equations, Ai and Bi, i ¼ 1–12, and the solution for the
equations of motion can be calculated using 24 boundary conditions (BC), 12 for each plane. In Table 1 these
BCs are presented in dimensionless form. The boundary conditions are similar for both planes. In equations of
Table 1, cij1

and cij2
(i ¼ 4,5 and j ¼ 4,5) are the local compliances of the first and second crack,

correspondingly, and they are defined as

cij ¼
ð1� n2Þ

ER3
c̄ij. (15)
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Table 1

Boundary conditions for a clamped-free shaft with a crack in the two main directions of vibration

Dimensionless BC of vertical vibration Dimensionless BC of horizontal vibrations

Ȳ 1ð0Þ ¼ 0 Z̄1ð0Þ ¼ 0

Ȳ
0

1ð0Þ ¼ 0 Z̄
0

1ð0Þ ¼ 0

Ȳ
00

3ð1Þ ¼ 0 Z̄003ð1Þ ¼ 0

Ȳ
000

3 ð1Þ ¼ 0 Z̄
000

3 ð1Þ ¼ 0

Ȳ 1ðL̄1Þ ¼ Ȳ 2ðL̄1Þ Z̄1ðL̄1Þ ¼ Z̄2ðL̄1Þ

Ȳ
00

1ðL̄1Þ ¼ Ȳ
00

2ðL̄1Þ Z̄001ðL̄1Þ ¼ Z̄002ðL̄1Þ

Ȳ
000

1 ðL̄1Þ ¼ Ȳ
000

2 ðL̄1Þ Z̄
000

1 ðL̄1Þ ¼ Z̄
000

2 ðL̄1Þ
pR

4L
ð1� n2Þðc̄551 Ȳ

00

1ðL̄1Þ þ c̄541 Z̄
00

1ðL̄1ÞÞ ¼ DȲ
0

21ðL̄1Þ
pR

4L
ð1� n2Þðc̄441 Z̄

00

1ðL̄1Þ þ c̄451 Ȳ
00

1ðL̄1ÞÞ ¼ DZ̄
0

21ðL̄1Þ

Ȳ 2ðL̄2Þ ¼ Ȳ 3ðL̄2Þ Z̄2ðL̄2Þ ¼ Z̄3ðL̄2Þ

Ȳ
00

2ðL̄2Þ ¼ Ȳ
00

3ðL̄2Þ Z̄
00

2ðL̄2Þ ¼ Z̄
00

3ðL̄2Þ

Ȳ
000

2 ðL̄2Þ ¼ Ȳ
000

3 ðL̄2Þ Z̄
000

2 ðL̄2Þ ¼ Z̄
000

3 ðL̄2Þ
pR

4L
ð1� n2Þðc̄552 Ȳ

00

2ðL̄2Þ þ c̄542 Z̄
00

2ðL̄2ÞÞ ¼ DȲ 032ðL̄2Þ
pR

4L
ð1� n2Þðc̄442 Z̄

00

2ðL̄2Þ þ c̄452 Ȳ
00

2ðL̄2ÞÞ ¼ DZ̄
0

32ðL̄2Þ
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Eqs. (9)–(14) are substituted into the 24 BC of Table 1 to obtain the homogenous system of 24 equations
and 24 unknowns (A1,A2,y,A12 and B1,B2,y,B12) as follows:

½P� A1 A2 � � � A12 B1 B2 � � � B12

n oT

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
24

¼ 0 0 � � � 0
� �T
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

24

. (16)

In Table 1, DȲ ij ¼ Ȳ j � Ȳ i, DZ̄ij ¼ Z̄j � Z̄i, where i ¼ 2,3 and j ¼ 1,2 and L̄i ¼ Li=L, where i ¼ 1,2.
The characteristic determinant of the homogenous system in Eq. (16), det|P|, must be equal to zero for a

non-trivial solution. The roots of the characteristic Eq. (17) are the eigenfrequencies of the multi-cracked shaft

det jPj ¼ det
A B

C D

����
���� ¼ 0, (17)

The sub-matrices A–D, included in Eq. (17), are defined in Appendix A.
3.2. Calculation of the eigenfrequencies of the multi-cracked shaft

Considering a shaft with two cracks of any characteristics (position, depth, rotational angle) the
dimensionless compliances c̄55; c̄44; c̄54; c̄45 can be computed for both cracks and the characteristic
determinant becomes a function of frequency o. As seen in Section 2, there are areas of rotational
angle in which the dimensionless compliances are equal to zero. The physical explanation of zero
compliance is that the crack does not introduce any additional slope in the shaft in a specific direc-
tion, and so the term of the additional slope due to coupling in the boundary conditions of Table 1
becomes equal to zero. The same goes for the other terms that contain the dimensionless compliances c̄55
and c̄44.

For a shaft of R/L ¼ 0.01, and with two cracks at positions L̄1 ¼ 0:1 and L̄2 ¼ 0:4, variable depths ā1 ¼

ā2 ¼ 0:2; 0:4; 0:5; 0:6; 0:8 and rotational angles j1 ¼ j2 ¼ 01, the roots of characteristic determinant are
presented in Table 2. The eigenfrequency change of a shaft with two cracks of constant depth and variable
rotational angle are examined. Suppose the shaft has two cracks with depths ā1 ¼ ā2 ¼ 0:4 and variable
rotational angles j1 ¼ j2 ¼ 01, 301, 601, 901, 1201, 1501, 1801. The eigenfrequency change is shown in Table 3.
As the crack rotational angle approaches 1801, the crack is fully closed and remains closed during the normal
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Table 3

Variation of 1st, 2nd, and 3rd dimensionless eigenfrequencies of both planes vs. the rotational angle of the crack and for ā1 ¼ ā2 ¼ 0:4

Rotational angle (deg) 1st eigenfrequency 2nd eigenfrequency 3rd eigenfrequency

j1 ¼ j2 Vertical/horizontal

0 3.482/3.511 21.896/22.015 61.527/61.674

30 3.483/3.512 21.902/22.016 61.534/61.677

60 3.497/3.513 21.957/22.023 61.602/61.684

90 3.511/3.515 22.012/22.031 61.671/61.695

120 3.514/3.516 22.026/22.034 61.689/61.698

150 3.516/3.516 22.035/22.035 61.700/61.700

180 3.516/3.516 22.035/22.035 61.700/61.700

Table 2

Variation of 1st, 2nd, and 3rd dimensionless eigenfrequencies of both planes vs. the crack depth when j1 ¼ j12 ¼ 901

Crack depth 1st eigenfrequency 2nd eigenfrequency 3nd eigenfrequency

a1/D ¼ a2/D Vertical/horizontal

0.0 3.516/3.516 22.035/22.035 61.700/61.700

0.1 3.509/3.515 22.000/22.034 61.660/61.697

0.2 3.482/3.511 21.896/22.015 61.527/61.674

0.25 3.458/3.504 21.800/21.988 61.410/61.642

0.3 3.427/3.493 21.671/21.941 61.253/61.583

0.4 3.337/3.440 21.287/21.724 60.796/61.317
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mode vibration because of the vertical static load. Thus, the eigenfrequency approaches the corresponding
value of the uncracked shaft in Table 3.

3.3. Calculation of the coupled response of the multi-cracked shaft

The responses in the horizontal and vertical planes are given in Eqs. (9)–(14). The constants Ai, Bi with
i ¼ 1,2,y,12 are obtained by the solution of the homogenous system as follows:

½P� A1 A2 � � � A12 B1 B2 � � � B12

n oT

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
24

¼ 0 0 � � � 0
� �T
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

24

. (18)

Supposing two cracks with depths ā1 ¼ ā2 ¼ 0:4 in positions L̄1 ¼ 0:1 and L̄2 ¼ 0:4 and rotational angles
j1 ¼ j2 ¼ 01, the dimensionless compliances take the following values from Fig. 3:

c̄551 ¼ c̄552 ¼ 0:72414; c̄441 ¼ c̄442 ¼ 0:10906; c̄451 ¼ c̄452 ¼ 0; c̄541 ¼ c̄542 ¼ �0:11004.

When the vertical excitation in the clamped end exists, the system of Eq. (18) takes the form as follows:

½P� fA1 A2 � � � A12 B1 B2 � � � B12 gT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
24

¼ f 0:0001 0 � � � 0 gT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
24

. (19)

The fact that c̄451 ¼ c̄452 ¼ 0 means that if a load is applied in plane 5 (the vertical plane), a coupling

response does not exist in plane 4 (the horizontal plane). The vertical load exists in this example by setting

Ȳ 1ð0Þ ¼ 0:0001, so after the system solution the variables Bi must be equal zero in order to have no horizontal
response. Consider matrix C, the lower-left sub-matrix of P (see Appendix A). All of its terms contain the
coupling dimensionless compliances c̄451 and c̄452 , which are equal to zero. So, the terms with the zero

compliance in the denominator are written off and matrix C is a zero matrix, indicating that there is no
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Fig. 6. Vertical response at the free end of the cracked shaft as a function of excitation frequency.
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coupling from plane 5 to plane 4. When sub-matrix B is the zero matrix because of the zero values in
compliances c̄541 and c̄542 , then there is no coupling from plane 4 to plane 5. This happens when the cracks are

totally closed. In this example, both cracks are symmetric in the vertical plane (j1 ¼ j2 ¼ 01) such that
c̄451 ¼ c̄452 ¼ 0. Note that the frequency of the excitation changes from zero up to o ¼ 5000 rad s�1, indicating

that the vibration passes through the first three resonances in the corresponding eigenfrequencies.
In Fig. 6, the vertical response is shown while the horizontal response is zero for any excitation frequency.

As expected the resonance (maximum response) exists in the frequencies of Table 2. If both cracks are rotated
equally such that j1 ¼ j2 ¼ 901, the compliances calculated are equal to c̄551 ¼ c̄552 ¼ 0:10906,
c̄441 ¼ c̄442 ¼ 0:0308;c̄451 ¼ c̄452 ¼ �0:11004 and c̄541 ¼ c̄542 ¼ �0:00563. All other characteristics (depth,
position) remain the same as in the previous case. In this example, the coupling phenomenon is observed in all
resonances of the spectrum. In Fig. 7a, the horizontal eigenfrequency intrudes into the vertical spectrum by
adding a characteristic peak in the frequency of o/o0 ¼ 3.515, which is the horizontal eigenfrequency as
shown in Table 2. The same goes for the horizontal spectrum where the vertical eigenfrequency intrudes into it
and generates the additional peak in Fig. 7b for o/o0 ¼ 3.510. The same phenomenon was also observed for
any other eigenfrequency. Tables 2 and 3 show a low eigenfrequency shift. The practical significance for
condition monitoring or diagnosis does not come up. However, there are geometric shaft models of smaller
slenderness ratios that can cause greater flexural moments in the cracked section, so as to generate a more
intense crack effect and a greater frequency shift.

As the crack depth increases, the coupling phenomenon becomes stronger and the eigenfrequencies of the
two planes further diverge. In continuing, the response in both planes is calculated for different rotational
angles of the cracks. In order to observe which amplitude dominates the other, the horizontal and vertical
amplitudes in the free end are divided to define the amplitude ratio (AR) as AR ¼ |Z3(L)|/|Y3(L)| with
ARA[0,1). The AR does take values near zero since the coupling effect cannot introduce vibrations of
amplitudes as large as the amplitude of vibration in the plane of excitation. The AR shows that, for specific
rotational angles, the horizontal vibration is zero while, at other rotational angles, there is a generation of
horizontal vibrations that remain at very low amplitude with respect to those of the vertical plane. Note that
the excitation exists only in the vertical plane. The vertical response does not significantly change during crack
rotation; this is due to the fact that the excitation is in the same plane and so the crack breathing cannot affect
a response that is due to an excitation in the same plane. On the other hand, the crack breathing produces a
significant change in this response due to the coupling effect and not due to the excitation of this plane. The
same phenomenon appears for the case of uniquely horizontal excitation. Fig. 8 shows that for 5 different
excitation frequencies, the maximum coupling always exists in the rotational angle of 901, which should be
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Fig. 7. (a) Vertical and (b) horizontal response in first resonance of Fig. 6.
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obvious because of the maximization of the coupling local compliance. Note that the excitation frequencies
are chosen to be different from those near resonance, because the resonance event causes unpredictable
variations of vibration amplitudes in both planes.

Another numerical example includes a clamped-free shaft of R/L ¼ 0.05. The slenderness ratio 2L/R ¼ 40,
compared to the previous example, offers higher eigenfrequencies and, as a result, a greater absolute
eigenfrequency shift due to the crack. Both crack depths are equal to ā1 ¼ ā2 ¼ 0:8. The cracks are located at
the same point L̄1 ¼ L̄2 ¼ 0:1 at rotational angles j1 ¼ 901 and j2 ¼ 2701. The local compliances for these
characteristics are calculated as

c̄551 ¼ 1:6590; c̄441 ¼ 0:5530; c̄451 ¼ �1:0045; c̄541 ¼ �0:08,

c̄552 ¼ 1:6590; c̄442 ¼ 0:5530; c̄452 ¼ 1:0045; c̄542 ¼ �0:08.

Both cracks are symmetric with respect to the center of the cracked cross section and the aim of this
acceptance is to show that no coupling exists when the cracked section is symmetric with respect to the plane
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Fig. 8. The amplitude ratio as a function of rotational angle for 5 different values of excitation frequency (dash: o ¼ 10 rad/s, continuous:

o ¼ 90 rad/s, short dash: o ¼ 250 rad/s, dash dot: o ¼ 500 rad/s, dash dot dot: o ¼ 800 rad/s).

Fig. 9. No coupling exists when the cracks are located symmetrically to the vertical plane and at the same location,

ā1 ¼ ā2 ¼ 0:8; L̄1 ¼ L̄2 ¼ 0:1, and j1 ¼ 901, j2 ¼ 2701.
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of the load even with two cracks present. The vertical response in Fig. 9 has no additional peaks due to
coupling while the horizontal response is zero.

If the second crack is moved at L̄2 ¼ 0:2 then, due to the difference in bending moment in each cracked
section, a coupling exists and the vertical and horizontal response obtain additional peaks. In Fig. 10 only the
vertical response of the coupled vibration is presented. It is easy to show that, when the orientations of both
cracks are the same, the coupling becomes more obvious.

There is also a case in which the coupling exists one-way. To explain further, if one of the two coupling
compliances c̄45; c̄54 is equal to or even near to zero, then the coupling exists only from one plane to the other.
For example, if c̄45! 0 then the coupling exists from the horizontal to the vertical plane while the coupling in
the inverse direction is not observed. Also if c̄54! 0, then only the coupling from the vertical to the horizontal
plane is presented. For ā1 ¼ ā2 ¼ 0:4 there are crack rotational angles, such as j1 ¼ j2 ¼ 1301 that give



ARTICLE IN PRESS

Fig. 10. Coupling existing in the vertical response of the shaft, when cracks are located symmetrically to the vertical plane and at different

location, a1/R ¼ a2/R ¼ 0.8, L1 ¼ 0.1L, L2 ¼ 0.2l, and j1 ¼ 90, j2 ¼ 2701.

Fig. 11. The first resonance in vertical (continuous line) and horizontal (dashed line) plane for the case that c̄541 ¼ c̄542 ¼ 0. Coupling

exists only in the horizontal plane.

Fig. 12. The experimental model: clamped-free shaft with a cut in j1 ¼ 901.
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Fig. 13. Experimental measurements of the vertical acceleration at the free end of the intact shaft as a function of excitation frequency.

Table 4

Experimental measurement of the double resonance peak, due to the coupling, in the two main planes, for the 1st, 2nd and 3rd

eigenfrequency, as a function of cut depth calculated in the experimental model

Cut depth a/D ¼ 0.0 a/D ¼ 0.1 a/D ¼ 0.2 a/D ¼ 0.4

Peak 1st/2nd

Vertical plane

1 30.0/30.0 29.5/29.5 30.0/30.0 29.8/29.8

2 192.2/196.9 191.5/196.5 190.7/195.2 189.5/193.9

3 538.5/547.4 537.8/546.4 537.6/546.1 536.5/545.6

Horizontal plane

1 30.0/30.0 29.5/29.5 29.6/29.6 29.6/29.6

2 192.3/196.8 191.6/196.4 190.8/195.1 189.6/193.8

3 538.5/546.1 538.4/545.8 537.7/545.5 536.8/545.1
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compliance values:

c̄551 ¼ c̄552 ¼ 0:01704; c̄441 ¼ c̄442 ¼ 0:00315; c̄451 ¼ c̄452 ¼ �0:0279; c̄541 ¼ c̄542 ¼ 0.

The frequency response for crack positions L̄1 ¼ 0:1 and L̄2 ¼ 0:2 obtains double peaks only in the
horizontal plane while, in vertical plane, no coupling is introduced, as it is shown in Fig. 11 for the first
resonance frequency. Same results are obtained but not presented for any other resonance frequency.

4. Experimental evidence

In order to observe and validate the theoretical model of the coupled bending vibrations, an experiment was
carried out. A clamped-free shaft with one cut was vibrated using a vertical excitation that is transferred to the
clamped end of the shaft using the base as shown in Fig. 12. The excitation frequency was a function of time
oe(t) ¼ 10t, 0oto500 s with a maximum value of 5000Hz so as to pass through the seventh resonance
frequency of the beam. Using an accelerometer in the free end of the beam, two signals, the vertical and the
horizontal accelerations were acquired in the free end. The accelerometer had an insignificant weight with
respect to the shaft, and so it was not accounted for in the analytical procedure. The signals for vertical and
horizontal acceleration, in the free end of the intact shaft, are acquired and in Fig. 13 the vertical one is presented.
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Table 5

Analytical calculation of the double resonance peak, due to the coupling, in the two main planes, for the 1st, 2nd and 3rd eigenfrequency,

as a function of crack depth

Crack depth a/D ¼ 0.0 a/D ¼ 0.1 a/D ¼ 0.2 a/D ¼ 0.4

Double peak 1st/2nd

Vertical plane

1 30.00/30.00 30.00/30.00 29.98/29.99 29.74/29.93

2 196.71/196.71 196.70/196.70 196.70/196.70 196.58/196.67

3 565.64/565.64 565.61/565.63 565.33/565.60 561.27/564.38

Horizontal plane

1 30.00/30.00 30.00/30.00 29.98/30.00 29.74/29.93

2 196.71/196.71 196.70/196.70 196.70/196.70 196.58/196.67

3 565.64/565.64 565.61/565.63 565.33/565.60 561.27/564.38

Fig. 14. The torsional spring at the clamped end of the shaft.
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A crack is very different from a slot [33,34], but the comparison between the analytical results of the cracked
shaft and the experimental results of a slotted shaft can be justified because, cracks, as well as slots, cause
coupling at some rotational angles. This procedure focused on investigating the response due to coupling that
is provoked either from cracks or slots, so long as greater depths in both defects intensively affect the coupling.
An eigenfrequency shift between the two cases is prospective.

The basic difference between a cracked and a slotted shaft is that the slotted one does not ‘‘breathe’’ and
remains open during the rotation. A second difference is that the stress intensity factor of the slotted shaft
should be different from that of the crack, because the radius of the crack tip tends to zero since the radius of
the slot depends on the radius of the saw used to open the slot. The calculation of the stress intensity factor
depends on the applied loads and the geometry (depth and width) of the crack.

The common property, that both slotted and cracked shafts have, is the shifting of the center of shear
stresses, from the center of the circular section to a rather asymmetric place, on a perpendicular to the crack
edge at its middle. This physically causes the coupling and this is common in both configurations. In any case,
a fatigue crack should be better in the experiment, but only a saw cut was used (which is easy to be made) to
verify the existence of the coupling.

A fast Fourier transform (FFT) gave the amplitude of acceleration as a function of the flexural frequency of the
shaft, and the resonance frequencies were calculated from the FFT plot. The resonance frequencies for the
experimental shaft are shown in Table 4. At the same time Table 5 presents the analytical resonance frequencies as
a function of the crack depth. Note that, until then, the horizontal response was due to the geometric asymmetry of
the experimental model with respect to the plane of the excitation, which was the vertical plane. The vibrator
machine could not vibrate perfectly in the vertical direction due to manufacturing constraints. This also applied for
the model of the beam and the base in Fig. 12, in which the welding joints made the construction not exclusively
symmetric to the vertical plane. So, measurements of the horizontal acceleration were expected even without a cut.
The differences between the experimental (Table 4) and the analytical (Table 5) eigenfrequencies for an uncracked
shaft (a/D ¼ 0) exist because the supposedly clamped end was not exclusively clamped due to the welding joint.
Also, the base could not be so stiff as to exclude all horizontal revolution when it was vibrated. The torsion in the
clamped end generated a revolution of the base in the vertical plane as shown in Fig. 12. These phenomena could
be modeled using torsional springs (vertical and horizontal) in the clamped end as shown in Fig. 14.
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Fig. 15. FFT for (a) vertical and (b) horizontal acceleration of the free end of the shaft without cut in the region of 0–600Hz.
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In this case, the boundary conditions in the clamped end become Y1
00(0)�KtY1

0(0) ¼ (0) and Z1
00(0)�

KtZ1
0(0) ¼ (0). Kt is the stiffness of the torsional spring in the vertical and horizontal direction. When Kt takes

values towards infinity, the model agrees with the analytical one of Section 3. With the new boundary conditions,
the characteristic determinant det|P| is a function of the frequencyo and of the stiffness Kt. It is feasible to estimate
the values of Kt so as to match the analytical eigenfrequencies to the experimental resonance frequencies for the
intact case. The FFT plots, of the vertical and horizontal time response, of the intact experimental shaft are shown
in Figs. 15a and b. The first three frequencies of the resonance in both directions are presented in Table 4.

By setting, in the matrix P, all local compliances equal to zero (no crack) and o ¼ 188.49 rad s�1

(first experimental resonance frequency), the equation det(P)|o ¼ 188.5 ¼ 0 gives the value of Kt ¼ 962.2Nmrad�1.
In Table 5, the first three analytical eigenfrequencies for both planes are presented.

In the shaft of Fig. 12, a cut was made with a variable dimensionless depth ā ¼ 0:2; 0:4; 0:8 and j ¼ 901;
the signals for the vertical and horizontal acceleration were acquired. In Figs. 16a and b, the FFT is plotted,
for the vertical and horizontal response, when ā ¼ 0:8.

The analytical model considers one crack so as to remain comparable with the experimental one (one cut). In
the mathematical model, then, one crack is at L1 ¼ 0.2L and the other one is at the free end, where L2 ¼ L, so as
to have no effect on the vibration. The frequency response is calculated for variable crack depths ā ¼

0:2; 0:4; 0:8 and j ¼ 901. Note that, in order for the coupling peaks to become visible, the excitation frequency
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Fig. 16. FFT for (a) vertical and (b) horizontal acceleration of the free end of the cut shaft with a cut of ā ¼ 0:8 in the region of 0–600Hz.
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changes with a step of 10�9 in the regions where coupling exists. In the other regions of excitation frequency, the
step is equal to 10�3; this is obligatory for procedure endurance. In Figs. 17a and b, the frequency response is
plotted for relative crack depth ā ¼ 0:8, for the vertical and horizontal response, respectively.

In Table 4 the double peak measurements, due to the vibration coupling, in the two main bending directions
are presented. It can be seen that as the depth of the cut increases, the resonance frequencies in the vertical
direction decrease. This is expected, because the deeper cut decreases the shaft stiffness. Note that in the case
of the intact experimental shaft, the additional peak of the horizontal response in the vertical response is quite
faint, but as the cut depth increases, the additional peak, from one direction to the other, becomes clearly
visible and larger in amplitude. This coupling phenomenon becomes clear, when two neighboring
eigenfrequencies exist in the area of the resonance of each direction. Note that exactly equal eigenfrequencies
are observed in both planes. The corresponding analytical responses show the same phenomenon.

The uncracked shaft has no horizontal response and, in the vertical response, the observed coupling is stronger as
the crack depth increases. The change in analytical eigenfrequencies does not exactly match those of the
experimental calculations; this is due to the fact that the dimensionless compliances are computed for the semi-
closed crack at the rotational angle of 901, but the experimental cut does not follow this rule because it is made with
a 0.5mm saw (cut). So, the local compliances in the experiment are much different than those calculated from the
stress intensity factors. Besides, the slenderness ratio of a cracked beam is a parameter that affects the reduction of
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Fig. 17. (a) Vertical and (b) horizontal response of the free end of the cracked shaft with a crack of ā ¼ 0:8.
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the eigenfrequencies. Bigger slenderness ratios cause smaller eigenvalue reductions and vise versa [35]. Here the shaft
used had a slenderness ratio l ¼ 2L/R ¼ 2� 400/4 ¼ 200 that is rather big and the reduction of the eigenvalues is
not expected to be large. The experimental results are generally repeatable inside a small range of discrepancies.

5. Conclusions

The coupling phenomenon of different vibration modes of a cracked shaft has been reported over the past
two decades. This investigation focuses on the coupled bending vibrations, particularly under the presence of
two cracks. Even if this kind of coupling in general was known and expected, the past investigations focused
on the coupling of longitudinal and bending or on the torsional and bending vibrations. The main conclusions
of this investigation could be summarized as follows:
(a)
 The compliance matrix during the rotation of the crack or of the shaft is computed in every
possible rotation angle, and it is not estimated using a small number of computed values. The four
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terms of the local compliance matrix were defined supposing that the crack breathes under the effect of
gravity.
(b)
 The frequency response in the analytical and experimental procedures proved that in each spectrum there
are resonances in the eigenfrequencies of both planes. In the vertical spectrum, both vertical and
horizontal resonances are presented; the same goes for horizontal spectrum. A double peak appears on the
vibration spectrum, for a shaft with one or two cracks, indicating the coupling of the vertical and
horizontal vibrations. The double peak appears more clearly in both spectrums as the crack depth
increases. The fact that two cracks are considered in this paper comes up due to a real situation of high
bending moments in a shaft at two different points, as in the case of four points bending of beams.
(c)
 When the two cracks are in phase, then the coupling phenomenon becomes stronger; meanwhile, if the two
cracks are opposite, then the coupling turns weaker.
(d)
 The coupled response in the horizontal plane under vertical excitation is maximized when the crack is
rotated by 901 in reference to the vertical plane. This is the result of the value of the local coupled
compliance, which is maximized at this rotational angle.
(e)
 The experimental procedure proved that the deeper crack makes the coupling phenomenon more intense.
This situation depends, of course, on the relative angular position of the cracks.
The experimental results confirmed the existence of the coupling and of the double peaks. The discre-
pancies observed from the analytical results are due to the flexibility of the clamped end on the vibration
table and the fact that a cut was used in the experimental procedure instead of a real fatigue crack. It has
been proven that the cut gives a smaller local compliance than that of a crack. A virtual spring was intro-
duced to model the clamped end in order to bring the experimental measurements into agreement with the
analytical ones.
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Appendix A

The sub-matrices of matrix P in Eq. (17) are defined as follows:

A ¼

1 0 1 0 0 0 0 0 0 0 0 0

0 ky 0 ky 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 k2
ychLy k2

yshLy �k2
ycLy �k2

ysLy

0 0 0 0 0 0 0 0 k3
yshLy k3

ychLy k3
ysLy �k3

ycLy

chL1y
shL1y

cL1y
sL1y

�chL1y
�shL1y

�cL1y
�sL1y

0 0 0 0
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ychL1y
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ycL1y

�k2
ysL1y

�k2
ychL1y
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yshL1y
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ycL1y

k2
ysL1y

0 0 0 0

k3
yshL1y

k3
ychL1y

k3
ysL1y

�k3
ycL1y

�k3
yshL1y

�k3
ychL1y

�k3
ysL1y

k3
ycL1y

0 0 0 0

O8;1 O8;2 O8;3 O8;4 O8;5 O8;6 O8;7 O8;8 0 0 0 0

0 0 0 0 chL2y
shL2y

cL2y
sL2y

�chL2y
�shL2y

�cL2y
�sL2y

0 0 0 0 �k2
ychL2y

�k2
yshL2y

k2
ycL2y

k2
ysL2y

k2
ychL2y

k2
yshL2y

�k2
ycL2y

�k2
ysL2y

0 0 0 0 �k3
yshL2y

�k3
ychL2y

�k3
ysL2y

k3
ycL2y

k3
yshL2y

k3
ychL2y

k3
ysL2y

�k3
ycL2y

0 0 0 0 O12;5 O12;6 O12;7 O12;8 �kyshL2y
�kychL2y

kysL2y
�kycL2y

2
6666666666666666666666666664

3
7777777777777777777777777775

,
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B ¼

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

O8;13 O8;14 O8;15 O8;16 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 O12;17 O12;18 O12;19 O12;20 0 0 0 0

2
6666666666666666666666664

3
7777777777777777777777775

,

C ¼

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

O20;1 O20;2 O20;3 O20;4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 O24;5 O24;6 O24;7 O24;8 0 0 0 0

2
6666666666666666666666664

3
7777777777777777777777775

,

D ¼
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�chL1z
�shL1z

�cL1z
�sL1z

0 0 0 0

k2
zchL1z

k2
zshL1z

�k2
zcL1z

�k2
zsL1z

�k2
zchL1z

�k2
zshL1z

k2
zcL1z

k2
zsL1z
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k3
zshL1z

k3
zchL1z

k3
zsL1z

�k3
zcL1z

�k3
zshL1z

�k3
zchL1z

�k3
zsL1z

k3
zcL1z

0 0 0 0

O20;13 O20;14 O20;15 O20;16 O20;17 O20;18 O20;19 O20;20 0 0 0 0

0 0 0 0 chL2z
shL2z

cL2z
sL2z

�chL2z
�shL2z

�cL2z
�sL2z

0 0 0 0 �k2
zchL2z

�k2
zshL2z

k2
zcL2z

k2
zsL2z

k2
zchL2z

k2
zshL2z

�k2
zcL2z

�k2
zsL2z

0 0 0 0 �k3
zshL2z

�k3
zchL2z

�k3
zsL2z

k3
zcL2z

k3
zshL2z

k3
zchL2z

sL2z
�k3

zcL2z

0 0 0 0 O24;17 O24;18 O24;19 O24;20 O24;21 O24;22 O24;23 O24;24

2
66666666666666666666666664

3
77777777777777777777777775
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Here

coshðkyLÞ ¼ chLy; sinhðkyLÞ ¼ shLy; cosðkyLÞ ¼ cLy; sinðkyLÞ ¼ sLy;

coshðkyL1Þ ¼ chL1y
; sinhðkyL1Þ ¼ shL1y

; cosðkyL1Þ ¼ cL1y
; sinðkyL1Þ ¼ sL1y

;

coshðkyL2Þ ¼ chL2y
; sinhðkyL2Þ ¼ shL2y

; cosðkyL2Þ ¼ cL2y
; sinðkyL2Þ ¼ sL2y

;

coshðkzLÞ ¼ chLz; sinhðkzLÞ ¼ shLz; cosðkzLÞ ¼ cLz; sinðkzLÞ ¼ sLz;

coshðkzL1Þ ¼ chL1z
; sinhðkzL1Þ ¼ shL1z

; cosðkzL1Þ ¼ cL1z
; sinðkzL1Þ ¼ sL1z

;

coshðkzL2Þ ¼ chL2z
; sinhðkzL2Þ ¼ shL2z

; cosðkzL2Þ ¼ cL2z
; sinðkzL2Þ ¼ sL2z

and

O8;1 ¼ EIk2
ychL1y

c551 þ kyshL1y
; O8;2 ¼ EIk2

yshL1y
c551 þ kychL1y

; O8;3 ¼ �EIk2
ycL1y

c551 � kysL1y
; O8;4 ¼ �EIk2

ysL1y
c551 þ kycL1y

;

O8;5 ¼ �kyshL1y
; O8;6 ¼ �kychL1y

; O8;7 ¼ kysL1y
; O8;8 ¼ �kycL1y

;

O8;13 ¼ EIk2
zchL1z

c541 ; O8;14 ¼ EIk2
zshL1z

c541 ; O8;15 ¼ �EIk2
zcL1z

c541 ; O8;16 ¼ �EIk2
zsL1z

c541 ;

O12;5 ¼ EIk2
ychL2y

c552 þ kyshL2y
; O12;6 ¼ EIk2

yshL2y
c552 þ kychL2y

; O12;7 ¼ �EIk2
ycL2y

c552 � kysL2y
; O12;8 ¼ �EIk2

ysL2y
c552 þ kycL2y

;

O12;17 ¼ EIk2
zchL2z

c542 ; O12;18 ¼ EIk2
zshL2z

c542 ; O12;19 ¼ �EIk2
zcL2z

c542 ; O12;20 ¼ �EIk2
zsL2z

c542 ;

O20;1 ¼ EIk2
ychL1y

c451 ; O20;2 ¼ EIk2
yshL1y

c451 ; O20;3 ¼ �EIk2
ycL1y

c451 ; O20;4 ¼ �EIk2
ysL1y

c451 ;

O20;13 ¼ EIk2
zchL1y

c441 þ kzshL1z
; O20;14 ¼ EIk2

zshL1y
c441 þ kzchL1z

; O20;15 ¼ �EIk2
zcL1y

c441 � kzsL1z
; O20;16 ¼ �EIk2

zsL1y
c441 þ kzcL1z

;

O20;17 ¼ �kzshL1z
; O20;18 ¼ �kzchL1z

; O20;19 ¼ kzsL1z
; O20;20 ¼ �kzcL1z

;

O24;5 ¼ EIk2
ychL2y

c452 ; O24;6 ¼ EIk2
yshL2y

c452 ; O24;7 ¼ �EIk2
ycL2y

c452 ; O24;8 ¼ �EIk2
ysL2y

c452 ;

O24;17 ¼ EIk2
zchL2y

c442 þ kzshL2z
; O24;18 ¼ EIk2

zshL2y
c442 þ kzchL2z

; O24;19 ¼ �EIk2
zcL2y

c442 � kzsL2z
; O24;20 ¼ �EIk2

zsL2y
c442 þ kzcL2z

;

O24;21 ¼ �kzshL2z
; O24;22 ¼ �kzchL2z

; O24;23 ¼ kzsL2z
; O24;24 ¼ �kzcL2z

:
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